LIBCDT(3)

NAME
Cdt - container data types

SYNOPSIS
#i ncl ude <cdt. h>

DICTIONAR Y TYPES

Library Functions Manual

LIBCDT(3)

Dt _t;
Dtdisc t;
Dt ret hod _t;
Dtlink t;
Distat _t;
DICTIONAR Y CONTROL
Dt _t* dt open(const Dtdisc_t* disc, const Dtnethod_t* neth);
i nt dtclose(Dt _t* dt);
voi d dtcl ear(dt);
Dtnethod_t* dtnmethod(Dt_t* dt, const Dinethod_t* neth);
Dtdisc_t* dtdisc(Dt_t* dt, const Ditdisc_t* disc, int type);
Dt t* dtviem(Dt _t* dt, Dt_t* view);
i nt dttreeset (Dt _t* dt, int mnp, int bal ance);
STORAGE METHODS
Dt et hod t* Dtset;
Dt net hod_t* Dt bag;
Dt mret hod_t* Dtoset;
Dt net hod_t* Dt obag;
Dtmethod t* Dtlist;
Dt mret hod_t* Dt stack;
Dt et hod_t* Dt queue;
Dt net hod_t* Dt deque;
DISCIPLINE
#def i ne DTOFFSET(struct_s, nenber)
#def i ne DTDI SC(di sc, key, si ze, | i nk, makef, freef, conmparf, hashf, nenoryf, eventf)
t ypedef voi d* (*Dt make f) (Dt _t*, void*, Dtdisc_t*);
t ypedef void (*Dtfree_f)(Dt_t*, void*, Dtdisc_t*);
typedef int (*Dt conpar _f) (Dt _t*, void*, void*, Dtdisc_t*);
typedef unsigned int (*Dthash_f)(Dt_t*, void*, Dtdisc_t*);
t ypedef voi d* (*Dtrenmory_f) (Dt _t*, void*, size_t, Dtdisc_t*);
typedef int (*Dtevent _f)(Dt_t*, int, void*, Dtdisc_t*);
OBJECT OPERATIONS
voi d* dtinsert(Dt_t* dt, void* obj);
voi d* dt append(Dt _t* dt, void* obj);
voi d* dtdel ete(Dt _t* dt, void* obj);
voi d* dtattach(Dt_t* dt, void* obj);
voi d* dtdetach(Dt _t* dt, void* obj);
voi d* dtsearch(Dt _t* dt, void* obj);
voi d* dtmatch(Dt _t* dt, void* key);
voi d* dtfirst(Dt_t* dt);
voi d* dtnext (Dt _t* dt, void* obj);
voi d* dtlast(Dt_t* dt);
voi d* dtprev(Dt _t* dt, void* obj);
voi d* dtfinger(Dt_t* dt);
voi d* dtrenew(Dt _t* dt, void* obj);
i nt dtwal k(Dt _t* dt, int (*userf)(Dt_t*, void*, void*), void*);
Dilink t* dtflatten(Dt_t* dt);

LIBCDT(3) Library Functions Manual LIBCDT(3)

Dtlink_t* dtlink(Dt_t*, Dtlink_t* link);

voi d* dtobj (Dt _t* dt, Dtlink_t* Iink);
Dilink t* dtextract(Dt_t* dt);

i nt dtrestore(Dt _t* dt, Dtlink_t* |ink);

#def i ne DTTREESEARCH(Dt _t* dt, void* obj, action)
#def i ne DTTREEMATCH(Dt _t* dt, void* key, action)

DICTIONAR Y STATUS

Dt _t* dtvnext (Dt _t* dt);

i nt dtvcount (Dt _t* dt);

Dt _t* dtvhere(Dt _t* dt);

i nt dtsize(Dt_t* dt);

i nt dtstat(Dt_t* dt, Dtstat_t*, int all);

HASH FUNCTIONS
unsi gned int dtstrhash(unsigned int h, char* str, int n);
unsi gned int dtcharhash(unsigned int h, unsigned char c);

DESCRIPTION
Cdt manages run-time dictionaries using standard container data types: unordered set/multiset, ordered
set/multiset, list, stack, and queue.

DICTIONAR Y TYPES
Dt_t
This is the type of a dictionary handle.

Dtdisc _t
This defines the type of a discipline structure which describes object lay-out and manipulation functions.

Dtmethod_t
This defines the type of a container method.

Dtlink_t
This is the type of a dictionary object holder (déeli sc() .)

Dtstat_t
This is the type of a structure to return dictionary statisticsdseeat () .)

DICTIONAR Y CONTROL
Dt_t* dtopen(const Dtdisc_t* disc, const Dtmethod_t* meth)
This creates a medictionary. di sc is a discipline structure to describe object formatt h specifies a
manipulation method.dt open() returns the ne dictionary or NULL on error See also the vents
DT_OPEN andDT__ENDOPEN below.

int dtclose(Dt_t* dt)
This deleteslt and its objects. Note thdt cl ose() fails if dt is being viewed by some other dictionar
ies (sealt vi ew()). dt cl ose() returnsO on success andl on error See also thevents DT_CLOSE
andDT_ENDCLCSE below.

void dtclear(Dt_t* dt)
This deletes all objects oft without closingdt .

Dtmethod_t dtmethod(Dt_t* dt, const Dtmethod_t* meth)
If met h is NULL, dt net hod() returns the current metho®therwise, it changes the storage method of
dt to neth. Object order remains the same during a method switch arbhg st, Dt st ack,
Dt queue and Dt deque. Switching to and fromDt set / Dt bag and Dt oset / Dt obag may cause
objects to be rehashed, reordered, or rmoh@s he case requiresdt met hod() returns the prgous
method oNULL on error.

LIBCDT(3) Library Functions Manual LIBCDT(3)

Dtdisc_t* dtdisc(Dt_t* dt, const Dtdisc_t* disc, int type)
If di sc isNULL, dt di sc() returns the current discipline. Otherwise, it changes the disciplide &
di sc. Objects may be rehashed, reordered, or x&has @propriate.t ype can be ay bit combination
of DT_SAMECMP andDT_SAMEHASH. DT_SAMECMP means that objects will compare exactly the same
as before thus obviating the need for reordering or vergmev duplicates. DT_SAMEHASH means that
hash values of objects remain the same thus obviating the need to rehdsksc() returns the prgous
discipline on success anLL on error.

Dt_t* dtview(Dt_t* dt, Dt_t* view)
A viewpath allows a search or walk starting from a dictionary to continue to andther ew() first ter
minates an current viev from dt to another dictionaryThen, ifvi ewis NULL, dt vi ew returns the ter
minated viev dictionary, If vi ewis notNULL, a viewpath fromdt to vi ewis establisheddt vi ew()
returnsdt on success andULL on error.

It is an error to hae dctionaries on a viewpath with different storage methods. In addition, dictionaries on
the same vi@ path should treat objects in a consistent manner with respect to comparison or hkshing.
not, undefined behaviors may result.

int dttreeset(Dt_t* dt, int minp, int balance)
This function only applies to dictionaries operated under the m&hodet which uses top-down splay
trees (see below). It returns 0 on success and -1 on error.

m np: This parameter defines the minimum path length before a search path is adfostecample,
m np equal 0 would mean that search paths aseye adjusted.If mi np is negdive, the mini-
mum search path is internally computed based on a function of the current dictionary size. This
computed value is such that if the tree is balanced, it wirrequire adjusting.

bal ance:
If this is non-zero, the tree will be made balanced.

STORAGE METHODS
Storage methods are of typenet hod_t *. Cdt supports the following methods:

Dtoset
Dtobag
Objects are ordered by comparisods.oset keeps unique objectdt obag allows repeatable objects.

Dtset

Dtbag
Objects are unordered set keeps unique objectsDt bag allows repeatable objects andvays keeps
them together (note the effect on dictionarglking.) Thesemethods use a hash table with chaining to
manage the objectsSee also thevent DT_HASHSI ZE belov on how to manage hash table resizing when
objects are inserted.

Dtlist
Objects are &pt in a list. The caltlti nsert () inserts a n& aobject in front ofthe current object (see
dtfinger()) if it is defined or at list front if no current object is definegsimilarly, the calldt ap-
pend() appends a neobject afterthe current object (seedt fi nger ()) if it is defined or at list end if
no current object is defined.

Dtdeque
Objects are @&pt in a deque. This is similar B | i st except that objects arevedys inserted at the front
and appended at the tail of the list.

Dtstack
Objects are kept in a stack, i.e., iwvewse order of insertion. Thus, the last object inserted is at stack top
and will be the first to be deleted.

Dtqueue
Objects are kept in a queue, i.e., in order of insertion. Thus, the first object inserted is at queue head and
will be the first to be deleted.

LIBCDT(3) Library Functions Manual LIBCDT(3)

DISCIPLINE
Object format and associated management functions are defined in tBe dysc_t :

t ypedef struct

{ int key, size;
i nt l'ink;
Dt make f makef ;
Ditfree f freef;
Dt conmpar _f conparf;
Dt hash_f hashf ;
Dt mermory_f menor yf;
Dtevent f eventf;

} Dtdisc_t;

int key, sze
Each objecbbj is identified by a &y used for object comparison or hashidgey should be non-rgztive
and defines an offset inabj . If si ze is negative, the ley is a null-terminated string with starting address
*(voi d**) ((char*) obj +key) . If si ze is zero, the &y is a null-terminated string with starting
addresq voi d*) ((char *) obj +key) . Finally, if si ze is positve, the ley is a tyte array of length
si ze starting ail voi d*) ((char *) obj +key) .

int link
Letobj be an object to be inserted irtb as discussed belo If | i nk is neyaive, an nternally allocated
object holder is used to hottbj . Otherwise,obj should hae aDt | i nk_t structure embeddedi nk
bytes into it, i.e., at addreé®xt | i nk_t *) ((char *) obj +l i nk) .

void* (*makef)(Dt_t* dt, void* obj, Dtdisc_t* disc)
If makef is notNULL, dti nsert (dt, obj) ordtappend() will call it to make a ©py of obj suit-
able for insertion intalt . If makef isNULL, obj itself will be inserted intalt .

void (*freef)(Dt_t* dt, void* obj, Dtdisc_t* disc)
If not NULL, f r eef is used to destyodata associated withbj .

int (*comparf)(Dt_t* dt, void* keyl, void* key2, Dtdisc_t* disc)
If not NULL, conpar f is used to compare twkeys. Itsreturn value should b€0, =0, or >0 to indicate
whetherkeyl is smaller equal to, or larger thakey2. All three values are significant for method
Dt oset andDt obag. For other methods, a zero value indicates equality and a non-zero value indicates
inequality If (*conparf) () isNULL, an internal function is used to compare tleykas @fined by the
Dt di sc_t. sizefield.

unsigned int (*hashf)(Dt_t* dt, void* key, Dtdisc_t* disc)
If not NULL, hashf is used to compute the hash valuekey. It is required that &s compared equal
will also havre same hashalues. Ithashf is NULL, an internal function is used to hash treylkes defined
by theDt di sc_t . si ze field.

void* (*memoryf)(Dt_t* dt, void* addr , Size_t size, Dtdisc_t* disc)
If not NULL, nenor yf is used to allocate and free memo¥yhenaddr is NULL, a mnemory segment of
sizesi ze is requestedIf addr is notNULL andsi ze is zero,addr is to be freed.f addr is notNULL
andsi ze is positve, addr is to be resized to thevgn sze. If menor yf is NULL, malloc(3) is used.

int (*eventf)(Dt_t* dt, int type, void* data, Dtdisc_t* disc)
If not NULL, event f announces variousvents. Eachevent may hae particular handling of the return
values fromevent f . But a ngative return value typically meanasifure. Following are the eents:

DT_OPEN:
dt is being openedIf event f returns ngdive, the opening process terminates witllure. If
event f returns zero, the opening process proceeds in a default maxpesitive return \alue
indicates special treatment of memory as fefio If * (voi d**) dat a is set to point to some
memory segment as discussedrenor yf , that segment of memory is used to start the dictio-
nary If * (voi d**) dat a is NULL, al memory including that of the dictionary handle itself will
be allocated viaenor yf .

LIBCDT(3) Library Functions Manual LIBCDT(3)

DT_ENDOPEN:
This event announces thalt open() has successfully opened a dictionary and is about to return.
Thedat a argument oevent f should be the medictionary handle itself.

DT_CLGCSE:
dt is about to be closed. #vent f returns ngaive, the closing process stops immediately and
dt cl ose() returns -1. Objects in the dictionary are deleted ongriént f returns zero.The
dictionary handle itself is processed as foHo If it was allocated viaral | oc(), it will be
freed. Ifit was allocated viaenor yf (seedt open())andeventf returns 0, a call taeno-
ryf will be issued to attempt freeing the handle. Otherwise, nothing will be done to its memory.

As should be clear from their description, trergs DT_OPEN andDT_ CLOSE are designed to be
used along withrenor yf to manage the allocation and deallocation of dictionary and object
memory across dictionaries. lact, thg can be used to manage dictionaries based on shared
and/or persistent memory.

DT_ENDCLCSE:
This event announces thalt cl ose() has successfully closed a dictionary and is about to return.

DT_DI SC:
The discipline ofdt is being changed to awene given in (Dt di sc_t *) dat a.

DT_METH:
The method ofit is being changed to awene given in (Dt net hod_t *) dat a.

DT_HASHSI ZE:
The hash table (fobt set and Dt bag) is being resized. In this cas&(i nt *) dat a has the
current size of the tableThe application can set the wetable size by first changing
(i nt)dat a to the desired size, then return a pesitialue. Theapplication can also fix the
table size at the currenaiue foreer by stting* (i nt *) dat a to a ngative value, then agin
return a positie value. A non-positie return value from thevent handling function means that
Cdt will be responsible for choosing the hash table size.

#define DTOFFSET(struct_s,member)
This macro function computes the offset@fimber from the start of structuret r uct _s. It is useful for
getting the offset of & | i nk_t embedded inside an object.

#define DTDISC(disc,key,size,link,makef,freef,comparf,hashf,memoryientf)
This macro function initializes the discipline pointed todbys ¢ with the given values.

OBJECT OPERATIONS

void* dtinsert(Dt_t* dt, void* obj)

void* dtappend(Dt_t* dt, void* obj)
These functions add an object prototypedby into dt . dti nsert () anddt append() perform the
same function for all methodseept forDt | i st. SeeDt | i st for details. If there is an existing object in
dt matchingobj and the storage methodb$ set or Dt oset, dti nsert () anddt append() will
simply return the matching object. Otherwise, & object is inserted according to the method in USee
Dt di sc_t . makef for object construction. The meobject or a matching object as noted will be returned
on success whilBIULL is returned on error.

void* dtdelete(Dt_t* dt, void* obj)
If obj is NULL, methodsDt st ack andDt queue delete respeatély stack top or queue head while other
methods do nothinglf obj is notNULL, there are tw cases. lthe method in use is nBt bag or Dt o-
bag, the first object matchingbj is deleted. On the other hand, if the method in u® =g or Dt o-
bag, the library check to see @fbj is in the dictionary and delete ilf obj is not in the dictionarysome
object matching it will be deletedseeDt di sc_t . f r eef for object destructiondt del et e() returns
the deleted object¥en if it was deallocated) ddULL on error.

LIBCDT(3) Library Functions Manual LIBCDT(3)

void* dtattach(Dt_t* dt, void* obj)
This function is similar tat i nsert () but obj itself will be inserted intalt even if a discipline func-
tion makef is defined.

void* dtdetach(Dt_t* dt, void* obj)
This function is similar talt del et e() but the object to be deleted frodt will not be freed (via the dis-
ciplinef r eef function).

void* dtsearch(Dt_t* dt, void* obj)

void* dtmatch(Dt_t* dt, void* key)
These functions find an object matchiolj or key either fromdt or from some dictionary accessible
from dt via a viewpath (sedt vi ew() .) dt sear ch() anddt mat ch() return the matching object or
NULL on failure.

void* dtfirst(Dt_t* dt)

void* dtnext(Dt_t* dt, void* obyj)
dtfirst() returns the first object idt. dt next () returns the object follsing obj . Objects are
ordered based on the storage method in EseDt oset andDt obag, objects are ordered by object com-
parisons. Br Dt st ack, objects are ordered inverse order of insertionFor Dt queue, objects are
ordered in order of insertior-or Dt | i st , objects are ordered by list positiofor Dt set andDt bag,
objects are ordered by some internal order (morael®hus,objects in a dictionary or a viewpath can be
walked using & or (; ;) loop as bele.

for(obj = dtfirst(dt); obj; obj = dtnext(dt, obj))

When a dictionary usedt set or Dtbag, the object order is determined upon a call to
dtfirst()/dtlast (). This order is frozen until a cadlt next () /dt prev() returnsNULL or when
these same functions are called with NMULL object agument. It is important that a
dtfirst()/dtlast() call be balanced bydt next ()/dt prev() call as described. Nested loops
will require multiple balancing, once per looff.loop balancing is not done carefylgither performance
is degraded or unexpected behaviors may result.

void* dtlast(Dt_t* dt)

void* dtpr ey(Dt_t* dt, void* obj)
dtl ast () anddtprev() are likedtfirst() anddt next () but work in reverse order Note that
dictionaries on a viepath are still alked in order but objects in each dictionary ardked in reverse
order.

void* dtfinger(Dt_t* dt)
This function returns theurrent object of dt , if any. The current object is defined after a successful call to
one of dtsearch(), dtmatch(), dtinsert(), dtfirst(), dtnext(), dtlast(), or
dt prev(). As a sde effect of this implementation &dt, when a dictionary is based @ oset and
Dt obag, the current object isabys defined and is the root of the tree.

void* dtrenew(Dt_t* dt, void* obj)
This function repositions and perhaps rehashes an afjgcafter its ley has been changedit r enew()
only works ifobj is the current object (sek f i nger ()).

dtwalk(Dt_t* dt, int (*userf)(Dt_t*, void*, void*), void* data)
This function call{ *user f) (wal k, obj , dat a) on each object idt and other dictionaries weble
from it. wal k is the dictionary containingbj . If userf () returns a<0 value, dt wal k() terminates
and returns the same valugt wal k() returnsO on completion.

Dtlink_t* dtflatten(Dt_t* dt)
Dtlink_t* dtlink(Dt_t* dt, Dtlink_t* link)
void* dtobj(Dt_t* dt, Dtlink_t* link)
Usingdtfirst()/dtnext () ordtlast()/dtprev() towalk a single dictionary can incur signifi-
cant cost due to function call&or efficient walking of a single directory (i.e., no wigathing),dt f | at -
ten() anddt! i nk() can be used. Objectsdt are made into a linked list and walked as follows:
for(link = dtflatten(dt); link; link = dtlink(dt,!ink))

Note thatdt f | att en() returns a list of typ®t | i nk_t *, not voi d*. That is, it returns a dictionary

LIBCDT(3) Library Functions Manual LIBCDT(3)

holder pointernot a user object pointer (although both are the same if the discipling ifield is zero.)
The macro functiomt | i nk() returns the dictionary holder object falling | i nk. The macro function
dt obj (dt, |i nk) returns the user object associated witmk, Bewae that the flattened object list is
unflattened on andictionary operations other thait | i nk() .

Dtlink_t* dtextract(Dt_t* dt)

int dtrestore(Dt_t* dt, Dtlink_t* link)
dt extract () extracts all objects frondt and makes it appear emptyt r est or e() repopulatesit
with objects previously obtained vii ext ract (). dtrest ore() will fail if dt is not empty These
functions can be used to share a saiinéhandle among mansets of objects.They are useful to reduce
dictionary awerhead in an application that creates ynaancurrent dictionaries. It is important that the
same discipline and method are in use at brttaetion and restoration. Otherwise, undefined biehs
may result.

#define DTTREESEARCH(Dt_t* dt, void* obj, action)

#define DTTREEMATCH(Dt_t* dt, void* key , action)
These macro functions are analogueslto$ear ch() anddt mat ch() but they can only be used on a
dictionary based on a binary search tree,Dieoset or Dt obag.

obj orkey:
These are used to find a matching object. If there is no match, the ré&illtis

action:
The matching objeas (which may beNULL) will be processed as follow:

action (0);

Sinceact i on is used erbatim, it can be 3nC code fragment combinable wifho) to form a
syntactically correct C statemerfior example, suppose that the matching object is agéntthe
below code accumulates the integer value in a variableal :

DTTREEMATCH(dt, key, total += (int));

DICTIONAR Y INFORMATION
Dt_t* dtvnext(Dt_t* dt)
This returns the dictionary thdt is viewing, if ary.

int dtvcount(Dt_t* dt)
This returns the number of dictionaries that viiw

Dt_t* dtvhere(Dt_t* dt)
This returns the dictionary viewable fromdt where an object as found from the most recent search or
walk operation.

int dtsize(Dt_t* dt)
This function returns the number of objects storedtin
int dtstat(Dt_t *dt, Dtstat_t* st, int all)

This function reports dictionary statisticH. al | is non-zero, all fields oft are filled. Otherwise, only
thedt _t ype anddt _si ze fields are filled. It return® on success andl on error.

Dt st at _t contains the bele fields:
int dt_type:

This is one of DT_SET, DT_BAG DT_OSET, DT_OBAG DT_LI ST, DT_STACK, and
DT_QUEUE.

int dt_size:
This contains the number of objects in the dictionary.

LIBCDT(3) Library Functions Manual LIBCDT(3)

int dt_n:
For Dt set andDt bag, this is the number of non-empty chains in the hash tdide Dt oset
andDt obag, this is the deepestJd in the tree (counting from zero.) Eaclvékin the tree con-
tains all nodes of equal distance from the root natte.n and the bela two fields are undefined
for other methods.

int dt_nax:
For Dt bag andDt set , this is the size of a largest chaiRor Dt oset andDt obag, this is the
size of a largest {&l.

int* dt_count:
For Dt set and Dt bag, this is the list of counts for chains of particular siz€sr example,
dt _count [1] is the number of chains of side For Dt oset andDt obag, this is the list of
sizes of the kels. For exampledt _count [1] is the size of feel 1.

HASH FUNCTIONS
unsigned int dtcharhash(unsigned int h, char c)
unsigned int dtstrhash(unsigned int h, char* strint n)
These functions compute hashiues from bytes or stringslt char hash() computes a e hash alue
from bytec and seedalueh. dt st rhash() computes a e hash walue from stringst r and seedalue
h. If nis positive, st r is a byte array of length; otherwise st r is a null-terminated string.

IMPLEMENT ATION NOTES
Dt set andDt bag are based on hash tables withveto-front collision chains.Dt oset andDt obag
are based on top-down splay tre@.| i st, Dt st ack andDt queue are based on doubly linked list.

AUTHOR
Kiem-Phong Vo, kpv@research.att.com

